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Gauss-Markov process and it yields approximate error variances,

passage time distributions, correlation properties, (among other
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1. Introduction

In Chapter 9 of [1], Lindsey and Simon develop several

interesting digital phase locked loops (DPLL) for the purpose of

symbol synchronization. In theireffort to estimate the variances

of the epoch estimation errors, it was assumed that the DPLL

adjustment rate is slow and the errors small. Then an "equivalent"

phase locked loop (PLL) was found, with an "equivalent" white

noise input. The error variance of a linearized form of this PLL

was then used as an approximation to the error variance of the DPLL.

In the development of such a continuous time parameter approximation

there are (or must be) either implicit or explicit amplitude

scalings of the signal and noise and of the system gains. By

speaking of an "equivalent PLL", and using it to estimate the error

variances, there is at least the tacit recognition that for some

suitable amplitude scaling of the error sequence, there is a con-

tinuous parameter interpolation of the error sequence which is

close in some statistical sense to the output of the "equivalent"

PLL. But the exact sense in which the PLL is "equivalent" or close

is not clear, owing to the informality of the development and the use

of a spectral analysis technique which fixed the state variable,

and does not allow it to vary naturally. The general idea is useful,

however, since owing to "central limit theorem" like effects, the

complicated detailed structure of the DPLL would be replaced by

a PLL with a white noise input, which is easier to analyze. When

speaking of closeness of a DPLL and a PLL, we might mean that if

the DPLL were parametrized (by, say, the symbol interal T or by

a system gain), then as the parameter converged to (say) zero, the
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output of the DPLL converged in a suitable sense to the output

of the PLL. Here, a systematic and rigorous way of doing this is

developed. The technique has wide applicability. The specific

end results are of the same type as obtained in [1], except that

owing to the "weak convergence" nature of the approximation, much

information on the DPLL beyond the error variances can be

(approximately) obtained from the limit process.

Recently a very useful technique [2] has been developed for

.... getting precise (in a-sense to be described below) diffusion-limits

of a sequence of suitably scaled (and suitably interpolated into a

continuous parameter processes) stochastic difference equations. Here,

these methods are applied to the synchronization problem, and the

correct approximating diffusion is obtained in a mathematically

rigorous way. The limit could conceivably be interpreted as the

output process of a particular PLL whose input noise is white
+

Gaussian. But the important thing is that it is not necessary to

make ad-hoc assumptions in the development. The method can be

used to handle a wide variety of structurally similar problems

in a systematic way. For specificity, we treat the scheme of

Figure 9.34 of [1] under the noise assumptions there. See Figure I

for the system. The same general scheme has been applied to other

problems in [31; namely, to get diffusion approximations to the

"state" processes of a learning automata for adaptive telephone

routing and an adaptive quantizer. The diffusion approximations

are much easier to study than the original processes. Related

"continuous time" methods have been applied in [4] to several

"continuous time" problems.

+We do not emphasize this because the limit equation is quite
simple-and an interpretation is not helpful.
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The specific problem, scaling and interpolation will be

developed in Section 2. The development is for the simple case

connected with ([l], Figure 9.34). Extensions to more general

noise, intersymbol interference and clock drift are discussed in

Section 5. As will be clear, the technique gives more information

.than simply an approximation to the error variance. In Section 3,

the general background theorem is given, together with some

definitions from the theory of weak convergence of a sequence of

stochastic processes._ In Section 4, the theorems of Section 3 are

applied to the problem of Section 2, and the main limit theorem

obtained.
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2. The DPLL; formulation, scaling and interpolation

The circuit is given in Figure 1, and Figure 2 gives the

timing sequences. In this section and in Section 4, the signal

sequence {sn } is a sequence of independent random variables,
n1

where sn = ±A0  and Pfs n = A0 } = , and s(t) = input signal =

sn  in the interval [nT+60 , nT+T+60), where 60 is the unknown

epoch which is to be estimated. Since only the estimation errors

are important, with no loss of generality we set 60 = 0. The

input noise nT(t) is white Gaussian, and its' power will be

given below. Let wT(t) =fnT(s)ds = Wiener process with variance

o2 t. We subscript nT(-) and wT(.) by T for reasons to be

discussed below (2.3). More general signal and noise models will

be discussed in Section 5. Let C denote the nth estimate ofn

60 and set Xn = (C n-6 )/T = n/T.

The algorithm. Using the two parameters, X nl' Xn, define

en (-,-) (see Figure 1) by

(2.1) en(Xn-l,xn) = isn(l'AXn- l)T + Sn+l (+Nn)T

+ WT((n+l+A+Xn)T) - wT((n+A+Xn-l)T)i

- ISn(A-xn-l)T + Sn+(l-A+xn )T

+ WT((n+2-A+Xn)T) - wT n+l-&+Xn-l)T)I.

Throughout, it is assumed (as in [1]) that A $ 1/4. With

use of a general finite memory linear filter, {Zn }1 {Xn }, is

defined by
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KAnl + y c.e ,XXn .),
:n+1 n + = ie n-i( n-i-i'Xn-i

(2.2) K
Xn+ 1 = n  T iein-i( n-i-I'Xn- i) l

where Y > 0. The technique for (2.2) is very similar to that

for (2.3). The limits all have the form (4.1) and differ only in

the power of the input noise and in 0 being replaced by O(X c.).

We will work with (2.3) for simplicity, where g (X') e (X')/T

(2.3) +n+1  = X + Y g(
n+l n T en(Xn-l'n n n

In any particular application, where T is fixed a-priori,

o2 is determined from the problem data. But, consider a sequence
T

of systems of the form (2.3), the sequence being parametrized by

T - 0. Assume, for purposes of this argument, that C = 0, and• n/ Ts

that s0 T + JnT(s)ds = y0  is used to estimate so  via a likelihood

ratio. Thus, if y0 > 0, then s0 = A0 > 0 is chosen. Note

P{choosing s0 = > 01 so = -A} d 0
aT T,
OTC

where N(0,1) is the standard normal distribution. Thus, a natural

parametrization is O 2= oT for some constant a. Note that the

(noise power in a bandwidth of order l/T)/signal power) is

constant, under the above scaling.

As Y - 0, the continuous parameter interpolation (interpolation

interval Y) of {X n converges to the solution of an ordinary

differential equation
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which will not yield the detailed path information which is

desired. A further normalization is required for this. It is

convenient to write gn(XnVXn) in the form

nl = (l-A-n )sn + (A+Xn)s
gn-11 n)  n-I nSnn+l

+ w(n+l'+A+Xn) - w(n+A+Xn 1l)I

- I(A-A nl)Sn + (1-A+An)sn+ 1 + w(n+2-A+Xn) -w(n+l-A+Xn l)i

where w(') is a Wiener process with variance+  a2t.

Next, define UY = X /vrY and define the process U Y() by
n n

uY~t) M U on each interval [nY,nY+Y). With parameter X ,'
n itv

replacing XnIXn , define 9(X,X,) - Egn (X,X), and define

Y(X An) g (X Xn) - g(x n We can now write the&n Xn-l'n) gn n-l' n -l' n )

normalized and centered iteration as

(2.4) UY  = UY + Yg(Xn-)/ Y) + / A Y(Xn X).
n+l n n-l'n n n-l' n

Define the derivative g(,X)_ - -0. It can be shown that

0 > 0. For the analysis, it is convenient to expand (2.4) as

(2.5) UY  = UY - YOU Y + Yv + An( Ynl Xn)

n+l n n n '

where v are O( 12  2 Y
nUn n1 I) and O(x)/Ixi 1s

bounded.

The limit theorem of Section 4 implies that {UY(') converges

in distribution to a particular Gauss-Markov diffusion U(') as y - C.

We can define w(t) wT(tT)/T.
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This limit would be the output of the "equivalent" PLL, and only

makes sense as a "near equivalence" if Y is small. In the cited

section of [1], it is also supposed that the error estimates

change slowly (small Y) and, in fact, that the X are "constant"' n

over a "long period" of time. The latter extraneous assumption

is not needed here.

Properties of {Xn } are obtained from X = /T Un Y YrY U(ny)n n n
or, equivalently, from (nY = t)

(2-. 6) ,ry U_(t) /T U[/Y (n T n 'T)

Although the result does not depend on it, Y would normally depend

on T, and the limit results suggest the appropriate form of the

dependence. Since we are concerned with the behavior of {X n}

over real time intervals {n: nT < t, by (2.6) wL should have

Y - 0 as T - 0. If y/T - 0 as T + 0, then (2.6) implies that

the system output becomes {Un }, constant on any finite time

interval as T - 0. Let nT = t. If Y/T - - as T - -, then

X [t/T]/" 7  - U(nT.Y/T) - U(-) (U(-) has the limit distribution,

as t + , of U(t)). In particular, let Y = cTa, 0 < 1. Then

the smaller is a, the larger are the errors. The best and most

natural form in Y = cT. Then the change of A per sample isn

proportional to the symbol interval width. The initial error X0

must be O(rt), for otherwise the system (2.3) will not be able

to improve the estimate for small Y.
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Via the method of the next section, it can be shown that the

vn terms in (2.5) contribute nothing to the limit. For the sake

- of_ simjplicity, we drop-them now. Thus, henceforth we work with

the partially linearized form

(2.7) UY + -
Y yOUY + v Yn n 1 An)n+l n n n
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3. Mathematical Background

3a. Remarks on weak convergence theory. The theory of weak con-

vergence of a sequence of probability measures is a powerful tool

which has found applications in many areas of applied probability

[ 5], [ 6], [ 9]. Only a few comments will be made here. For a

full treatment, see [10]. Let D[O,w) denote the space of real-

valued functions which are right continuous and have left hand

- -- limits. The piecewise constant process UY() can be treated

as an abstract random variable with values in D[O,o), and it induces

a probability measure P y on it, (actually on the sets of D[0,w)

defined by a certain topology, called the Skorokhod topology - but

this need not concern us here). The sequence {UY( )} is said to

be tight if for each 6 > 0, there is a compact set K6 E D[0,w)

such that P{U Y (.) E K 6} > 1 - 6 for each 6. The sequence

{uY(.)} converges weakly to a process U(.) if U(.) has paths

in D[0,o) and induces a measure P on it, and if for every

bounded and continuous real valued function F(.) on D[0,-),

f F(v)dP (v) - f F(v)dP(v) as y . 0. If {UY(.)} is tight, then

each subsequence contains a further subsequence which converges

weakly to some process with paths in D[0,-). In Section 4, it will

be shown that for our problem all limits are actually the same Gauss-

Markov process. The limit will give us the desired information about

the errors and dynamics of {U } for small Y. Weak convergence is
n

a substantial generalization of convergence in distribution.

Theorem 1 below gives criteria for tightness and weak convergence to a
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specific limit which are readily verifiable for our problem directly

in terms of the problem data. Despite the abstract framework, the

techniques are readily usable on problems such as the one of Section 2

and extensions, and the method of proof of Theorem 2 illustrates the

relatively straightforward way in which the abstract Theorem 1 can

often be applied.

3b. Remarks on the limit theorem. Let B(.) denote a standard

Wiener process (covariance t) and x(-) the solution to the scalar

stochastic differential equation

(3.1) dx = k(x,t)dt + v(x,t)dB,

where we suppose that k(,.) and v(.,.) are continuous and that

(3.1) has a unique solution (in the sense of distributions). Let RY

n
denote the set {Y, j < n, UT', j < n}, and let EY denote the

3 n

conditional expectation given Rn . Define the conditional "average

nndiffernce" peratr A y Af(ny) = [Eyf(ny+y) - f(ny)]/y, where I

f(-) is a function which is constant on the intervals [ny,ny+y) and

which depends on at most RY at time ny. The operator A defined byn

af + v2 a 2 f
(3.2) Af(x,t) = k(x,t) (xt)

is the differential generator of the process (3.1). If

(3.3) A f(Uy(nY),nY) (A+3/at)f(uY(nY),nY) - 0

V 
.
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as Y 0 for a suitably large class of functions f, then, under

some subsidiary conditions one could conclude that UY() x(-)

weakly. Unfortunately, (3.3) is hard to get and does not hold in

our case. Kurtz [7] showed that if (3.3) holds when the left hand

f is "perturbed" to some fY which is close to f, then under

-some subsidiary conditions the processes will converge weakly.

This point of view was developed and simplified in [8], [2]. Here,

we use the form developed in [2], which is the most convenient for the

purposes of this paper.

For purely technical reasons in the proof it is convenient to-I bound the process Uy(.) in the manner given below. This bounding

is used only in the theorem statement and as a techiical device

in the proofs. It does not affect the result. If, for each bound, the

sequence of bounded processes converges weakly, then

the original sequence converges as desired. Let bN(.) denote a

continuous function which is zero in {x: lx[ > N + 1}, equal to

unity in {x: jxj 5 N}, and is infinitely differentiable. Define

{UyN} by

UyN UyN [eyN (,N- N N N(UN).

(3.4) n+l = N - YN N

Here X N vy N defines XN The sequence {U y 'N isn n n n i

stopped once it passes N + 1. Let UY'N(.) be the piecewise

constant process which equals UyN on the intervals [ny, ny+y).n

In Theorem 1, for each N, AN stands for an operator of the form

(3.2) whose coefficients are continuous and equal those of the

operator A in the set {x: lxi 5 N}. The expressions EY N and
n
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Y,N denote (resp.) expectation conditioned on RYN =UN, j < n

TN N N j < n) and the "conditional average difference" operator

AY'Nf(ny) [E YNf(ny+y) f(nY)]/y.Sn

Theorem 1 is an adaptation of Theorems 2 and 3 of [2] to our

problem. We use = set of functions of (x,t) with compact

support and whose mixed partial derivatives up to order 3 are

continuous.

3c. The main background theorem.

jT hSorye.j. Assume the conditions on the coefficients of AN  and
A given above, id on the uniqueness to the solution of (3.1). For each

integer N and f(-,') E -9, suppose that there is a sequence of

random functions fY,N(.) satisfying the following conditions:
fYN(.) is constant on each [Yn,Yn+Y) interval and depends only on

UYN i <, 0 , j < n, there. For each N and t0 < - (recall

UY, N  UY , N (ny))n

(3.5) sup EjfYN(ny)l <, sup EIAY'NfY'N(ny)j < , ny < to
n,Y n,Y

(3.6) EfY'N(ny) _ f(UY'N,ny)I - 0,

EIY'YNfY'N(ny) (.L + AN MUn'N nY) 0 as y .0,

and nY tn.
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Then if (), y > 0} is tight for each N, and UY N(0)

converges to some U(O) in distribution as Y -+ 0, we have

U(") -+ x(-) weakly, where x(') solves (3.1) with x(0) = U(0).

The sequence IuYPN(-), Y > 0} is tight for each N if for

each t o < 0 ,

(3.7) lim P{ sup 1fY'N(nY) - f(UY'N,ny)l > 01} = 0, each Ot > 0,
Y O Yn <t 0

-0

(3.8) lir lin Pf sup JAY'NfY'N(ny)I > KI = 0.
K4 Y>O Yn<t0 i0
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4. The Limit Theorem

As noted in Section 2, the magnitude of the initial errors

must be commensurate with the gain Y. Otherwise the system of

Figure 1 will not function for small Y and T. For simplicity

assume that there is a random variable U0  such that X 01.- U0

as ? + 0. In the work connected with [1, Figure 9.34], it was

implicitly assumed that U = stady state solution to (4.1) below.

0

.. TDeor m.2 {IU(*)} -converges weakly to the solution U(-)

of the Gauss-Markov equation (4.1), as y - 0.

(4.1) dU = -OUdt + vdB, u(O) = U0.

In (4.1), B(.) is a standard Wiener process and (see above (2.4)

for the definitions of gng) and v is given by

2 =2E[gn1(010) - g(0,0)][gn(0,0) - g(0,0)]

2+ E[g n(0,0) - g(0,0)1J., any n > 1,

Note. The form of v is similar to that obtained formally by the

method of [1, p. 445-447].

Proof. We need only verify the conditions of Theorem 1 for

the process {UYN of (3.4), for each fixed N. The proof is

relatively straightforward. The systematic way in which the fYN(.)

are constructed is typical of the method in other problems. Henceforth,
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the test function f(-,.) E 9 is fixed (recall the definition of

given above Theorem 1) and for notational convenience, we omit

the superscript N on everything except A IN and EY N. We willn

get the perturbed test function fY (-) in the form fY(ny) =

f(U ,nY) + f (nY) + f (nY) + fY(nY), where the are to be

chosen sequentially such that the conditions of Theorem 1 hold.

Start by applying AY,N to f(.,.):

" -(4.3) Y AY f(U ,nY) =yf (Un ny) + o(y) - f n Y ) 0  b (U)

" fuu- (Un ,nY)b(Y X X)

un N n' n -l

"Yuu n b U) , YX2
2 N(Unn n n-i'X)

+ 0 in

The o Y  is a remainder term in the truncated Taylor expansion andIn

satisfies

Y,N O( 3/2 (RY(
(4.4) On En O(Y 3n/( -l, nX)I + 1)).

For future use, note that (owing to the properties of the Wiener

process) for each to < cc, and N > 0,

lim sup I/Y = 0 w.p.l.,
)Y-0 ny<t 0

lim sup EIoy /YI 0.
y ,O nY<to ln
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All 0Y  introduced below also satisfy (4.5).kn

Only the first and third terms on the right of (4.3) can be

part of an operator such as (3/3t + AN). The 4 th and 5th terms of

(4.3) depend on the noise CQ(n-lSXn) as well as on (UY ,nY) and

need to be "averaged out". The perturbation f0 is chosen to

"average out" the fuu term. Define +

Y f u(UY nY) Vn" - 2
.(4.6-1 f0  (nY) = uu- bn ) J nrEYN' Y( X X 2 _

0 --- bN jn j n-l' n n-P n

Y fuu(Un ,nY)b E( nX, 2
2 _N(UY)[EY-N (n) (X n- X n)

For our particular problem, due to the truncation effects of bN(

IX n < A < 1/4 for small Y and the signal and Wiener process comiponents

of 0I'(Xn Xn) (for j > n) are independent of {7, j < n, U, j < n}.

Thus, the sum in (4.6) reduces to a single term. The general (and

more complicated than needed) summation form for fy is introduced

here only because it is the appropriate form of fy(ny) for the

generalizations of Section 5, and will facilitate the discussion

there. For the same reason, fy,fy are introduced in a summation form

below, even though for the problem of this section, the sum reduces

to a single term.

+When expectations of the form E YjLn etc., are written, we

mean [E (, ') ] , ; i.e., the hn-lXn are treated

as parameters and considered to be fixed when computing the expectations.

Also nlAn), j > n, is defined by , ( ') with A = X= hn .

: --- n - 1Ti n I . . . . . . .. . i i - n . .I . . i I . . . . . . . . . . .
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Now,applying AY, to f 0 ny) yields

^YNN Y (U~ Y nY+Y)
y( AYonPY ) YE YNUU n+1l b (U~ )

JA0 ~lf Yn' 2 N n+1.

Y( (A'nix )) 2 _ [ (4' ( A) 21

Y, f (U~ ,nY) Y ,YX2
(4.7) UU nI b (U )[E PN(YAlQ

E6 - (X Ix ) 2~

on the right y
The part of the last term/containing the [Yn is the negative

of the next to the last term of (4.3). Also,

(4.8) YE(O(X X A)) 2 = YE( (XnpXn)) 2 + 0(Y).

For future use note that for each t 0 > 0 and i = 0,

(4.9) urn sup If (ny)I = 0 w.p.l, lrn sup Ejfr(lY)I = 0.

Equation (4.9) will also hold for the f Y IfY introduced below.1' 2

Replacing UY and X~, by UY and X , resp., in the
n~l n1 nY

first term of (4.7) alters that term only by a quantity o n

satisfying (4.5). In fact, o Y is bounded by (4.10). All the o'

introduced subsequently satisfy (4.5), but explicit bounds will not

be given.
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(4.10) O(y3/2 ) EYN[1+1Y (X n l) (1+ +l (2n~n)[)] +n n -1i n lXn))

+ O(Y)ENIO' (XPlA ) w(n+2A )-w(n+2-A+)I+OYEn n+l n' n+lI -+Xn+l 1 "n~l

With U replaced by U X in the first term of (4.7)n+l9 n+l ny n

that term has the value zero, due to the independence of the in-

crements of the Wiener process over non-overlapping time intervals.

Next, we turn to "averaging out" the rT term of (4.3). This

will be done in two steps. Define

f (ny) = ry f (Uy,ny)bN(U) Eu un Nny) j=n n nl n

/y fu(U 'ny)b, UY) _,N ).
= n nn n n n  d

Applying A'Y, to fy(nY) yields

(4.11) XY'Nf (ny (n -f Y(nY) +
+ Y I f (UY nY)O (X 9 +

n N(Un+I) u n+l' n+l n+l °3n

where the oyn is due to the replacement of nY + Y by ny. The
3n

function fy satisfies (4.9). The first term of (4.11) is the

negative of the /7 term of (4.3). The midile term of (4.11) will have

to be averaged further.
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The middle term on the right side of (4.11) can be expanded

as

(4.12) ,7 EYN[f ,nY)bN(UY) + (fu(Un ,nY)bN ()uU~+U)~lXnl 4n A N n N )u n~l Un n~l 'n n~l i

The component of (4.12) involving (fub )u can be written as

-(4;13)- Y(f (UY,nY)bN(Uy)) Ey'N +-o(Y)un Nnu n n+l n, n+l) n-nl, n +o)

Y(fflrI (Ui) E Y,N Y (.A Y~( + OYu Y ( Uf ,nY)b N(U ' u n n+l(Xn' 'n) 'n n-l' n n "5

The component of (4.12) involving (fubN) can be written as

VY fu(UynYn)b(U¥)E ,N ( + o6 (),Un N n n n+l n Xn) +6n

the first term of which equals zero by virtue of the independence of

the increments of the Wiener process over non-overlapping time

intervals.

Next, define fy by

(4.14) he om above X Ak k(n "n 3n-1

u n N j=,n j+l Xn'Xn)

By the comment above (4.14), the second sum is zero (in the more

general cases of Section 5, it will not necessarily be zero).

Again, by the independence of the increments of w(.) over non-

overlapping time intervals,
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En ,N " y( = EW x MY(X X )( n (X iX , (k > j)n k n' n)(n-l- n) k n' n g(n-l' n)

for j > n + 1 and also for j = n if k > n + 1 (in which case

both sides of the above equations equal zero). Thus (4.14) equals

(4. 15 f Y nb (LY y YX S N y (X Ix )y(X 9)X
un N nnu n n+l(Xn'Xn'Nn- n n+l n n n n-l'n

It can be shown that

YA Y N fy(nY)= -(4.1S) + o + 0(Y).

One component of (minus (4.15))is the negative of the principal

part of (4.13), the other component is the "averaged" centering term.

Also, fy satisfies (4.9).

Summarizing the above calculations and recalling that2

fy(nY) = f(Uny,nY) + 2 f (nY), for each t < 0, N < c,
i=0

(4.16) lim sup Elfy(nY)- f(Un,ny)I = 0,
Y-0 n <t 0

lim sup Ify(n ) - f(UnY,nY)I = 0 w.p.l.
Y-O nY<1t0

Also, taking advantage of the cancellations in AYN[f+f 0fl +f2 ] we

have

f(Jy ny) -

&YfYny)= t n'n ( U f(,nY)b N(U~r)

(4.17) ( fuu ((~I,ny)bNCUY)E( yA'n

+ (f (U nY)b (U)) E y ( +0' /y.u n Nn U n+lnnn n-1ln 8n



21

Changing Xn, X n+l to zero in the right side of (4.17) alters that

term by O(/r). Define the operator A by

2 2
a N a vN(Un,nY) a2

+A (UY,nY) 2 + kN(Ufl'nY)J--u f (U ,nY)

= first four terms on right of (4.17), but with X Xn n-1

replaced by 0.

- -By-the- properties of- bN(.), we have vN2(u,t) = v 2 , kN(u,t) = -Ol

when lul < N. Finally, since the solution of (4.1) is unique,

all the conditions of Theorem 1 hold and the proof is completed.

Q.E.D.
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S. Extensions

5.1 General noise and intersymbol interference. Only an informal

discussion will be given, With the appropriate scaling, the method

is similar to that of the last section. Let sT(t) + T(t) denote

the input, where sT(. ) = input signal, T(. ) = stationary input

noise with zero mean value.

Suppose that the channel memory is given by a function hT(.).

To keep the system from degenerating as T - 0, we use IT(t) =

h(t/T) for some transfer function h(.). For notational convenience

assume that h(.) # 0 only over a finite interval; in particular

let h(t) = 0 for t > Q for some integer Q. Let the waveform

transmitted in the interval [iT,iT+T) have the form siq(t-iT),

where q(u) = 0 out of [0,T] and {si } is a stationary

sequence. Then

sT(t) = [ iT] . h(t )q(T-iT)dT "

i=[T]-Q

Define

t t/T
ST(t) M ST (u)du, S(t) = ST(t)/T = J0  sT(vT)dv.

The noise model is based on two considerations. First, for

simplicity, we want the process wT(. ) to have only a finite memory

(convenient, but not essential). Second, the considerations

discussed below (2.3) still hold here; i.e., we want
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var W(s)ds = GTT = T for some a. To accomplish these aims

we introduce a stationary random process 4(-), define T(t) = J P(s)ds,

assume that there is an integer R such that for each to,

{4(s), s < tO} is independent of {Y(s), s > tO + RI, and set

T(t) = Y(t/T).

The finiteness assumptions connected with R,Q, guarantee

that the sums defining fy,N in Theorem 2 contain only a finite

numbler-of terms (with -he -signal and noise of this subsection used).

The "tails" of these sums are all zero by the finiteness and in-

dependence assumptions.
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Next, define gn(Q') 1(0,l')I UY ,Y(XX') as above (2.4),' 'n n' n"

but with the noise and signal processes of this subsection; e.g.,

9n(XX') has the representation

gn(XX') = IS(n+l+A+X') - S(n+A+X ) + T(n+l+A+X') -(n+A+X)I

IS(n+2-A+X') - S(n+l-A+X) + (n+2-A+X') -(n+I-A+X)I.

Again, set -0 = d-d and suppose that 0 > 0, for otherwise

the system (2.4) will be unstable for small Y > 0.

We will not go into the details, but the method of Theorem 2

works here also. Given f E -9, the general (finite) summation

forms of the f.Y,N are used to get the perturbed test function

fY,N (recall that superscripts N were usually omitted in

Theorem 2). We need to verify that (4.9) holds, and that (4.5)

YINholds for the 0 kn error terms. There can be verified under

reasonable conditions on P(.). Assuming this, Theorem 2 holds

but with the first term of v 2 replaced by (the sum contains at

most max(Q,R)+l terms).

2 kEk+l(0 ,0).

5.2. Random clock drift. For simplicity, return to the problem

formulation of Sections 1 and 2, but suppose that the transmitter

clock drifts. In particular, let the signal take the value

s(t) = si on [ti,ti+l) rather than as [iT,iT+T), where

10 = 6O , tn+l tn + T + 6n+l' where 6n is a zero mean random
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n
variable such that '6n/T is small. Write 6 = 6..

n n a i=0 1

n= nT + 60 The system is given by Figure 1, and ^n still
nd n tin

denotes the estimate of the epoch 60. Set Xn = [ n - 6 0 ]/T. We

use the algorithm (2.3), (2.4) which we write in the form

5 n+l : E n + Yen(Zn-i/T, ^n/T ) .

The integrator dumping timing is still given by Figure 2 but with

the current definition of {En }. Figure 3 is merely a translation

of Figure 2 into the "T " notation. Inn

particular,note that (n+A)T + E = AT + X T + T - 6 , andn -1 n-1 n n'

(n+l-A)T + en-1 = (I-A)T + X n lT + - 6n
n-i n n"

Define gn(Xn 1 l,X n ) H en (Znl /TSn/T)/T as in Section 2.

Referring to Figure 3, note that

X lw(A+ Xn +tn+i/T -6n/T)-w(A+Xn l+ /T-6 n /T)

+ Sn [(l-A- inl+(6n+6n+l)/T] + Sn+l(Xn+A-6n+i/T)

(5.2) - lw(1-A+Xn+'n+l/T-6 n+/T) - [w(l-A+X nl+T n/T-6 n/T)

+ n CAxnl+(6n+'n+l)/T)] + sn+l -A+ -6n+l/T]

gn( is defined as in (5.2) with parameters X,X' replacing

Xn-, n' resp. Let [(A,X') = Egn(AA,). Next rewrite (5.1) as

(5.3) X n+l n - 6n+l/T + ygn n-1,Xn) "

Define Y by 6n+/Tr - ry Define CY ( ), U Y  and UY(.) as

DeOn n n 1n " n ( , ' n
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d

above (2.4), but using the g of (5.2). Let 0 - d

and assume that 8 > 0. As in Sections 2, 4, we work with the

partially linearized system, which is

Y _ Y Y(5.4) U = U- Y0U + ry X ( x 7 y( n+l n n n n-l' n n

In fact, the "linearization errors" go to zero on any finite
interval {n: ny < t 0 ) as Y - 0.

For the sake of simplicity, let there be an No not depending

Yon T or Y such that ({., i < n} is independent of

Y' i > n + N for each n. This is used only to assure that
1 .0

the sums fY,N defined in Theorem 2 have a finite number of non-
1

zero terms. Also, suppose that { Y } is independent of w(.)
1

(these assumptions are not necessary, but simplify the discussion).

In order to effectively track changes in the timing, the drift terms

[6 } must be "of the order of Y" (loosely speaking). In particular,n

we assume that {i r} is stationary, with a covariance not depending

on Y.

The method of Theorem 2 can now be applied and the limit

process is

(5.5) dU = -0Udt + vldB,

where (v2  is defined in Theorem 2)

(5.6) v 2= v 2 + [E(y)2 + 2 EYi ].

Y

The added term in (5.6) is due to the {7'y 1n} clock drift process.n

If (4y} were not independent of w(.), then there would be an
n

additional "cross" term in (5.6).
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